OFFSET
1,1
COMMENTS
This is an approximation to Pi. It is accurate to 0.00000849%.
355/113 is the third convergent of the continued fraction expansion of Pi (A001203). - Lekraj Beedassy, Jun 18 2003
In one of Ramanujan's papers, a note at the bottom states that "If the area of the circle be 140,000 square miles, then RD [RD = d/2 * Sqrt(355/113) = r*Sqrt(Pi), very nearly] is greater than the true length by about an inch."
This approximation of Pi was suggested by the astronomer Tsu Chúng-chih (A.D. 430 - 501) (see Gullberg). - Stefano Spezia, Jan 13 2025
REFERENCES
Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 88.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi, p. 91.
Ramanujan's papers, "Squaring the circle", Journal of the Indian Mathematical Society, V, 1913, 132. - Robert G. Wilson v, May 30 2014
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.
LINKS
Dario Castellanos, The ubiquitous pi, Math. Mag., 61 (1988), 67-98 and 148-163. [N. J. A. Sloane, Mar 24 2012]
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
FORMULA
a(n) = a(n - 112) for n > 113. - Jeppe Stig Nielsen, Dec 14 2019
EXAMPLE
3.141592920353982300884955752212389380530973451327433628318584...
MAPLE
Digits:=100: evalf(355/113); # Wesley Ivan Hurt, Mar 14 2015
MATHEMATICA
Flatten[RealDigits[355/113, 10, 100]] (* Wesley Ivan Hurt, Mar 14 2015 *)
PROG
(PARI) 355/113. \\ Charles R Greathouse IV, May 30 2014
(PARI) a(n) = if(n==1, 3, digits(16*10^112 \ 113)[(n-2) % 112 + 1]) \\ Jeppe Stig Nielsen, Dec 14 2019
CROSSREFS
KEYWORD
AUTHOR
Nenad Radakovic, Mar 22 2002
EXTENSIONS
More terms from Sascha Kurz, Mar 23 2002
Terms a(106) and beyond from Jeppe Stig Nielsen, Dec 14 2019
STATUS
approved