login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A069127
Centered 14-gonal numbers.
9
1, 15, 43, 85, 141, 211, 295, 393, 505, 631, 771, 925, 1093, 1275, 1471, 1681, 1905, 2143, 2395, 2661, 2941, 3235, 3543, 3865, 4201, 4551, 4915, 5293, 5685, 6091, 6511, 6945, 7393, 7855, 8331, 8821, 9325, 9843, 10375, 10921, 11481, 12055, 12643, 13245, 13861, 14491
OFFSET
1,2
COMMENTS
Binomial transform of [1, 14, 14, 0, 0, 0, ...] and Narayana transform (A001263) of [1, 14, 0, 0, 0, ...]. - Gary W. Adamson, Jul 29 2011
Centered tetradecagonal numbers or centered tetrakaidecagonal numbers. - Omar E. Pol, Oct 03 2011
FORMULA
a(n) = 7*n^2 - 7*n + 1.
a(n) = 14*n+a(n-1)-14 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+12*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
a(n) = A163756(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = a(-n+1) = A193053(2n-2) + A193053(2n-3). - Bruno Berselli, Oct 21 2011
Sum_{n>=1} 1/a(n) = Pi * tan(sqrt(3/7)*Pi/2) / sqrt(21). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 8*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 8/e - 1. (End)
a(n) = A069099(n) + 7*A000217(n-1). - Leo Tavares, Jul 09 2021
E.g.f.: exp(x)*(1 + 7*x^2) - 1. - Stefano Spezia, Aug 01 2024
EXAMPLE
a(5) = 141 because 7*5^2 - 7*5 + 1 = 175 - 35 + 1 = 141.
a(5) = 71 because 71 = (7*5^2 - 7*5 + 2)/2 = (175 - 35 + 2)/2 = 142/2.
From Bruno Berselli, Oct 27 2017: (Start)
1 = -(1) + (2).
15 = -(1+2) + (3+4+5+6).
43 = -(1+2+3) + (4+5+6+7+8+9+10).
85 = -(1+2+3+4) + (5+6+7+8+9+10+11+12+13+14).
141 = -(1+2+3+4+5) + (6+7+8+9+10+11+12+13+14+15+16+17+18). (End)
MATHEMATICA
FoldList[#1 + #2 &, 1, 14 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
Accumulate[14*Range[0, 50]]+1 (* Harvey P. Dale, Apr 09 2012 *)
PROG
(PARI) a(n)=7*n^2-7*n+1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Terrel Trotter, Jr., Apr 07 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy