login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A070357
a(n) = 3^n mod 28.
1
1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25, 19, 1, 3, 9, 27, 25
OFFSET
0,2
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4).
G.f.: ( -1-2*x-6*x^2-19*x^3 ) / ( (x-1)*(1+x)*(x^2-x+1) ). (End)
From G. C. Greubel, Mar 09 2016: (Start)
a(n) = a(n-6).
E.g.f.: (1/3)*( 35*cosh(x) + 49*sinh(x) - 32*exp(x/2)*cos(sqrt(3)*x/2) - 16*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) ). (End)
MATHEMATICA
PowerMod[3, Range[0, 90], 28] (* Harvey P. Dale, Jul 23 2012 *)
PROG
(Sage) [power_mod(3, n, 28)for n in range(0, 83)] # Zerinvary Lajos, Nov 25 2009
(PARI) a(n)=lift(Mod(3, 28)^n) \\ Charles R Greathouse IV, Mar 22 2016
CROSSREFS
Cf. A000244.
Sequence in context: A036123 A168427 A070344 * A131137 A370871 A061948
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy