login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A071099
a(n) = (n-1)*(n+3) - 2^n + 4.
2
0, 2, 5, 8, 9, 4, -15, -64, -175, -412, -903, -1904, -3927, -7996, -16159, -32512, -65247, -130748, -261783, -523888, -1048135, -2096668, -4193775, -8388032, -16776591, -33553756, -67108135, -134216944, -268434615, -536870012, -1073740863, -2147482624, -4294966207, -8589933436, -17179867959
OFFSET
0,2
REFERENCES
J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12).
LINKS
J. Propp, Updated article
J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
FORMULA
G.f.: x*(2 - 5*x + x^2)/((1-x)^3*(1-2*x)). - Colin Barker, May 10 2012
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4). - Vincenzo Librandi, May 11 2012
EXAMPLE
G.f. = 2*x + 5*X^2 + 8*X^3 + 9*X^4 + 4*X^5 - 15*X^6 - 64*X^7 - 175*X^8 + ...
MATHEMATICA
Table[(2*n^2-2^n)/2, {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2010 *)
CoefficientList[Series[x*(2-5*x+x^2)/((1-x)^3*(1-2*x)), {x, 0, 40}], x] (* Vincenzo Librandi, May 11 2012 *)
LinearRecurrence[{5, -9, 7, -2}, {0, 2, 5, 8}, 40] (* Harvey P. Dale, Jan 14 2015 *)
PROG
(Magma) [(n-1)*(n+3)-2^n+4: n in [0..40]]; // Vincenzo Librandi, May 11 2012
CROSSREFS
Sequence in context: A131716 A011279 A185094 * A078001 A072955 A288730
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, May 28 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy