login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A077913
Expansion of 1/((1-x)*(1+x+2*x^2+x^3)).
1
1, 0, -1, 1, 2, -2, -2, 5, 2, -9, 1, 16, -8, -24, 25, 32, -57, -31, 114, 6, -202, 77, 322, -273, -447, 672, 496, -1392, -271, 2560, -625, -4223, 2914, 6158, -7762, -7467, 16834, 5863, -32063, 3504, 54760, -29704, -83319, 87968, 108375, -200991, -103726, 397334, 11110, -702051, 282498, 1110495
OFFSET
0,5
FORMULA
G.f.: 1-x^2/(U(0)+x^2) where U(k)= 1 + (1+x)*x/( 1 - (1+x)*x/((1+x)*x + 1/U(k+1))) ; (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 24 2012
5*a(n) = 1 + 4*A077979(n) + 3*A077979(n-1) + A077979(n-2). - R. J. Mathar, Jul 10 2013
MATHEMATICA
LinearRecurrence[{0, -1, 1, 1}, {1, 0, -1, 1}, 60] (* or *) CoefficientList[ Series[1/((1-x)*(1+x+2*x^2+x^3)), {x, 0, 60}], x] (* G. C. Greubel, Jul 02 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec(1/((1-x)*(1+x+2*x^2+x^3))) \\ G. C. Greubel, Jul 02 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1+x+2*x^2+x^3)) )); // G. C. Greubel, Jul 02 2019
(Sage) (1/((1-x)*(1+x+2*x^2+x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Jul 02 2019
(GAP) a:=[1, 0, -1, 1];; for n in [5..60] do a[n]:=-a[n-2]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jul 02 2019
CROSSREFS
Sequence in context: A355198 A363924 A029662 * A069862 A075002 A228917
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy