login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A077962
Expansion of 1/(1+x^2+x^3).
6
1, 0, -1, -1, 1, 2, 0, -3, -2, 3, 5, -1, -8, -4, 9, 12, -5, -21, -7, 26, 28, -19, -54, -9, 73, 63, -64, -136, 1, 200, 135, -201, -335, 66, 536, 269, -602, -805, 333, 1407, 472, -1740, -1879, 1268, 3619, 611, -4887, -4230, 4276, 9117, -46, -13393, -9071, 13439, 22464, -4368, -35903, -18096, 40271, 53999
OFFSET
0,6
LINKS
M. Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5. [N. J. A. Sloane, Sep 16 2012]
FORMULA
a(n) = (-1)^n*A077961(n).
MATHEMATICA
CoefficientList[ Series[1/(1 + x^2 + x^3), {x, 0, 70}], x] (* Robert G. Wilson v, Mar 22 2011 *)
LinearRecurrence[{0, -1, -1}, {1, 0, -1}, 70] (* Harvey P. Dale, Dec 04 2015 *)
PROG
(PARI) Vec(1/(1+x^2+x^3)+O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(1+x^2+x^3) )); // G. C. Greubel, Jun 23 2019
(Sage) (1/(1+x^2+x^3)).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jun 23 2019
(GAP) a:=[1, 0, -1];; for n in [4..70] do a[n]:=-a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 23 2019
CROSSREFS
Sequence in context: A341889 A078031 A077961 * A353484 A349134 A338101
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy