login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A078365
A Chebyshev T-sequence with Diophantine property.
5
2, 15, 223, 3330, 49727, 742575, 11088898, 165590895, 2472774527, 36926027010, 551417630623, 8234338432335, 122963658854402, 1836220544383695, 27420344506901023, 409468947059131650
OFFSET
0,1
COMMENTS
a(n) gives the general (positive integer) solution of the Pell equation a^2 - 221*b^2 =+4 with companion sequence b(n)=A078364(n-1), n>=1.
REFERENCES
O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
FORMULA
a(n)=15*a(n-1)-a(n-2), n >= 1; a(-1)=15, a(0)=2.
a(n) = S(n, 15) - S(n-2, 15) = 2*T(n, 15/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 15)=A078364(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-15*x)/(1-15*x+x^2).
a(n) = ap^n + am^n, with ap := (15+sqrt(221))/2 and am := (15-sqrt(221))/2.
MATHEMATICA
a[0] = 2; a[1] = 15; a[n_] := 15a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{15, -1}, {2, 15}, 20] (* Harvey P. Dale, Nov 09 2022 *)
PROG
(Sage) [lucas_number2(n, 15, 1) for n in range(0, 20)] # Zerinvary Lajos, Jun 26 2008
CROSSREFS
a(n)=sqrt(4 + 221*A078364(n-1)^2), n>=1, (Pell equation d=221, +4).
Cf. A077428, A078355 (Pell +4 equations).
Sequence in context: A087962 A140054 A099085 * A379884 A207037 A218798
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy