login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A080009
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=3, I={2}.
1
1, 1, 2, 4, 11, 26, 56, 127, 288, 660, 1500, 3401, 7729, 17565, 39930, 90735, 206176, 468536, 1064750, 2419661, 5498621, 12495505, 28395889, 64529315, 146642077, 333242093, 757288191, 1720927502, 3910785158, 8887207808, 20196062308
OFFSET
0,3
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
FORMULA
a(n) = a(n-1)+a(n-2)+2*a(n-3)+3*a(n-4)+5*a(n-5)+a(n-7)-a(n-8)-a(n-9)-a(n-10).
G.f.: -(x^5+x^3-1)/(x^10+x^9+x^8-x^7-5*x^5-3*x^4-2*x^3-x^2-x+1)
MATHEMATICA
LinearRecurrence[{1, 1, 2, 3, 5, 0, 1, -1, -1, -1}, {1, 1, 2, 4, 11, 26, 56, 127, 288, 660}, 40] (* Harvey P. Dale, Nov 20 2021 *)
KEYWORD
nonn
AUTHOR
Vladimir Baltic, Feb 10 2003
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy