login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A081078
a(n) = Lucas(4n) - 3, or Lucas(2n-1)*Lucas(2n+1).
1
4, 44, 319, 2204, 15124, 103679, 710644, 4870844, 33385279, 228826124, 1568397604, 10749957119, 73681302244, 505019158604, 3461452807999, 23725150497404, 162614600673844, 1114577054219519, 7639424778862804, 52361396397820124, 358890350005878079
OFFSET
1,1
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
FORMULA
a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
From R. J. Mathar, Sep 03 2010: (Start)
G.f.: x*(-4-12*x+x^2) / ( (x-1)*(x^2-7*x+1)).
a(n) = A056854(n)-3. (End)
From Peter Bala, Nov 30 2013: (Start)
a(n) = Lucas(2*n)^2 - 5.
Sum_{n>=1} 1/a(n) = (5 - sqrt(5))/10. (End)
Sum_{n>=1} 1/a(n) = A244847. - Amiram Eldar, Oct 27 2020
MAPLE
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 1 to 40 do printf(`%d, `, luc(4*n)-3) od: # James A. Sellers, Mar 05 2003
MATHEMATICA
LinearRecurrence[{8, -8, 1}, {4, 44, 319}, 30] (* Harvey P. Dale, Jun 08 2014 *)
Table[LucasL[4*n] - 3, {n, 1, 20}] (* Amiram Eldar, Oct 27 2020 *)
PROG
(PARI) Vec(x*(-4-12*x+x^2) / ( (x-1)*(x^2-7*x+1)) + O(x^30)) \\ Michel Marcus, Dec 23 2014
CROSSREFS
Cf. A000032 (Lucas numbers), A056854 (Lucas(4n)), A244847.
Sequence in context: A129551 A202162 A354646 * A220920 A035014 A259989
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 04 2003
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy