login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A093119
Number of convex polyominoes with a 3 X n+1 minimal bounding rectangle.
2
13, 68, 222, 555, 1171, 2198, 3788, 6117, 9385, 13816, 19658, 27183, 36687, 48490, 62936, 80393, 101253, 125932, 154870, 188531, 227403, 271998, 322852, 380525, 445601, 518688, 600418, 691447, 792455, 904146, 1027248, 1162513
OFFSET
1,1
FORMULA
a(n) = ((3*n+2)*C(2n+4, 4) - 4*n*C(n+2, n)^2)/(n+2), n>0.
a(n) = (6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6.
From Colin Barker, Feb 24 2019: (Start)
G.f.: x*(13 + 3*x + 12*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: -1 + (6 + 72*x + 129*x^2 + 56*x^3 + 6*x^4)*exp(x)/6. - G. C. Greubel, Jun 26 2019
MATHEMATICA
a[n_] := n^4 + 10*n^3/3 + 9*n^2/2 + 19*n/6 + 1; Array[a, 40] (* Jean-François Alcover, Feb 24 2019 *)
PROG
(PARI) Vec(x*(13 + 3*x + 12*x^2 - 5*x^3 + x^4) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Feb 24 2019
(Magma) [(6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6: n in [1..40]]; // G. C. Greubel, Jun 26 2019
(Sage) [(6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6 for n in (1..40)] # G. C. Greubel, Jun 26 2019
(GAP) List([1..40], n-> (6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6) # G. C. Greubel, Jun 26 2019
CROSSREFS
Row 2 of triangle A093118.
Sequence in context: A213355 A229999 A258618 * A362102 A239538 A156794
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Mar 21 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy