login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A099393
a(n) = 4^n + 2^n - 1.
15
1, 5, 19, 71, 271, 1055, 4159, 16511, 65791, 262655, 1049599, 4196351, 16781311, 67117055, 268451839, 1073774591, 4295032831, 17180000255, 68719738879, 274878431231, 1099512676351, 4398048608255, 17592190238719
OFFSET
0,2
COMMENTS
Number of occurrences of letter 2 in the (n+1)-st Peano word.
In binary representation, a leading one followed by n zeros then by n ones. - Reinhard Zumkeller, Feb 07 2006
The number of involutions in group G_n G_{n+1} = G_n(operation) D_8. For example, Q_8->1 involution; D_8->5 involutions - Roger L. Bagula, Aug 08 2007
LINKS
A. M. Cohen and D. E. Taylor, On a Certain Lie Algebra Defined By a Finite Group, American Mathematical Monthly, volume 114, number 7, August-September 2007, pages 633-638. Also preprint. a(n) = t_n in proof of theorem 6.2.
Sergey Kitaev and Toufik Mansour, The Peano curve and counting occurrences of some patterns, arXiv:math/0210268 [math.CO], 2002. Section 3 lemma 1, d_2^n = a(n-1).
Sergey Kitaev, Toufik Mansour, and Patrice Séébold, Generating the Peano curve and counting occurrences of some patterns, Journal of Automata, Languages and Combinatorics, volume 9, number 4, 2004, pages 439-455. Also at ResearchGate. Section 4, |P_n|_r = a(n-1).
FORMULA
a(n) = A063376(n)-1.
a(n) = A020522(n) + A000225(n+1) = A083420(n) - A020522(n); A000120(a(n)) = n+1; A023416(a(n))=n; A070939(a(n)) = 2*n+1; 2*A020522(n)+1 = A030101(a(n)). - Reinhard Zumkeller, Feb 07 2006
a(n) = 2^(2*n-1) + 2*a(n-1) + 1. - Roger L. Bagula, Aug 08 2007
From Mohammad K. Azarian, Jan 15 2009: (Start)
G.f.: 1/(1-4*x) + 1/(1-2*x) - 1/(1-x).
E.g.f.: e^(4*x) + e^(2*x) - e^x. (End)
a(n) = A279396(n+4, 4). - Wolfdieter Lang, Jan 10 2017
a(n) = A002378(2^n) - 1 = 2*A000217(2^n) - 1 = 2*A007582(n) - 1. - Peter Munn, Nov 20 2022
EXAMPLE
n=5: a(5)=4^5+2^5-1=1024+32-1=1055 -> '10000011111'.
MATHEMATICA
LinearRecurrence[{7, -14, 8}, {1, 5, 19}, 30] (* Harvey P. Dale, Sep 06 2015 *)
PROG
(Magma) [4^n + 2^n - 1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=4^n+2^n-1; \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
See the formula section for the relationships with A000120, A000217, A000225, A002378, A007582, A020522, A023416, A030101, A063376, A070939, A083420, A279396.
Sequence in context: A255449 A296630 A001834 * A083588 A149759 A149760
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Oct 20 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy