login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A100088
Expansion of (1-x^2)/((1-2*x)*(1+x^2)).
3
1, 2, 2, 4, 10, 20, 38, 76, 154, 308, 614, 1228, 2458, 4916, 9830, 19660, 39322, 78644, 157286, 314572, 629146, 1258292, 2516582, 5033164, 10066330, 20132660, 40265318, 80530636, 161061274, 322122548, 644245094, 1288490188, 2576980378
OFFSET
0,2
COMMENTS
A Chebyshev transform of A100087, under the mapping A(x) -> ((1-x^2)/(1+x^2)) * A(x/(1+x^2)).
A176742(n+2) = A084099(n+2) = period 4:repeat 0, -2, 0, 2.
FORMULA
a(n) = (3*2^n + 2*cos(Pi*n/2) + 4*sin(Pi*n/2))/5.
a(n) = n*Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A100087(n-2*k)/(n-k).
a(n) = 2*a(n-1) + period 4:repeat 0, -2, 0, 2, with a(0) = 1.
a(n) = A007910(n+1) - A007910(n-1).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3).
a(n) = (1/5)*(3*2^n + i^n*(1+(-1)^n) - 2*i^(n+1)*(1-(-1)^n)). - G. C. Greubel, Jul 08 2022
a(n) = A122117(n/2) if (n mod 2 = 0) otherwise 2*A122117((n-1)/2). - G. C. Greubel, Jul 21 2022
MATHEMATICA
CoefficientList[Series[(1-x^2)/((1-2x)(1+x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, -1, 2}, {1, 2, 2}, 40] (* Harvey P. Dale, May 12 2011 *)
PROG
(Magma) [n le 3 select Floor((n+2)/2) else 2*Self(n-1) - Self(n-2) +2*Self(n-3): n in [1..41]]; // G. C. Greubel, Jul 08 2022
(SageMath)
def b(n): return (2/5)*(3*2^(2*n-1) + (-1)^n) # b=A122117
def A100088(n): return b(n/2) if (n%2==0) else 2*b((n-1)/2)
[A100088(n) for n in (0..60)] # G. C. Greubel, Jul 08 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 03 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy