login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A100523
a(n) = a(n-1)^2 + 2*a(n-1) - 1 with a(0) = 1.
1
1, 2, 7, 62, 3967, 15745022, 247905749270527, 61457260521381894004129398782, 3776994870793005510047522464634252677140721938309041881087
OFFSET
0,2
FORMULA
a(n) ~ c^(2^n), where c = 1.6784589651254290832096890907802189718037513767396728769965837700954845976... . - Vaclav Kotesovec, Dec 18 2014
MATHEMATICA
RecurrenceTable[{a[n] == a[n-1]^2 + a[n-1]*2 - 1, a[0] == 1}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
PROG
(Magma) [n le 1 select 1 else Self(n-1)^2 +2*Self(n-1) -1: n in [1..13]]; // G. C. Greubel, Jun 26 2022
(SageMath)
def a(n): return 1 if (n==0) else a(n-1)^2 + 2*a(n-1) - 1 # a=A100523
[a(n) for n in (0..12)] # G. C. Greubel, Jun 26 2022
CROSSREFS
Cf. A004019.
Sequence in context: A153694 A354306 A228906 * A181030 A006506 A346781
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 24 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy