login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A100536
a(n) = 3*n^2 - 2.
18
1, 10, 25, 46, 73, 106, 145, 190, 241, 298, 361, 430, 505, 586, 673, 766, 865, 970, 1081, 1198, 1321, 1450, 1585, 1726, 1873, 2026, 2185, 2350, 2521, 2698, 2881, 3070, 3265, 3466, 3673, 3886, 4105, 4330, 4561, 4798, 5041, 5290, 5545, 5806, 6073, 6346, 6625
OFFSET
1,2
COMMENTS
Integers k such that 3*k + 6 is a perfect square. - Gary Detlefs, Feb 22 2010
Binomial transform of (1, 9, 6, 0, 0, 0, 0, 0, 0, 0, ...). - Philippe Deléham, Mar 16 2014
LINKS
FORMULA
a(n) = a(n-1) + 6*n - 3 for n>1. - Vincenzo Librandi, Nov 17 2010
G.f.: x*(1+7*x-2*x^2) / (1-x)^3. - R. J. Mathar, Oct 03 2011
-a(n) = (k-1)^2 + k^2 + (k+1)^2, where k = n*sqrt(-1). - Bruno Berselli, Jan 24 2014
a(T(n)+1) = T(n+1)^2 + T(n)^2 + T(n-1)^2, where T = A000217. - Bruno Berselli, May 14 2014
a(n+1) = binomial(n,0) + 9*binomial(n,1) + 6*binomial(n,2). - Philippe Deléham, Mar 16 2014
a(n) = floor(1/(n*tan(1/n) - 1)). - Clark Kimberling, Dec 02 2014
E.g.f.: 2 - (2 - 3*x - 3*x^2)*exp(x). - G. C. Greubel, Mar 27 2023
EXAMPLE
From Philippe Deléham, Mar 16 2014: (Start)
a(2)=10 after the evaluation of a(2) = 3*(2^2) - 2 = 3*(4) - 2 = 12 - 2 = 10.
a(1) = 1*1 = 1;
a(2) = 1*1 + 9*1 = 10;
a(3) = 1*1 + 9*2 + 6*1 = 25;
a(4) = 1*1 + 9*3 + 6*3 = 46;
a(5) = 1*1 + 9*4 + 6*6 = 73; etc. (End)
MATHEMATICA
3*Range[50]^2-2 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
CoefficientList[Series[x (1+7x-2x^2)/(1-x)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 10, 25}, 50] (* Harvey P. Dale, Nov 20 2023 *)
PROG
(PARI) a(n)=3*n^2-2 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [3*n^2-2: n in [1..50]]; // G. C. Greubel, Mar 27 2023
(SageMath) [3*n^2 -2 for n in range(1, 51)] # G. C. Greubel, Mar 27 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tyler J Newman (Tylerjnewman(AT)adelphia.net), Nov 27 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy