login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A102871
a(n) = a(n-3) - 5*a(n-2) + 5*a(n-1), a(0) = 1, a(1) = 3, a(2) = 10.
6
1, 3, 10, 36, 133, 495, 1846, 6888, 25705, 95931, 358018, 1336140, 4986541, 18610023, 69453550, 259204176, 967363153, 3610248435, 13473630586, 50284273908, 187663465045, 700369586271, 2613814880038, 9754889933880, 36405744855481, 135868089488043, 507066613096690
OFFSET
0,2
COMMENTS
A floretion-generated sequence resulting from a particular transform of the periodic sequence (-1,1).
Floretion Algebra Multiplication Program, FAMP Code: .5em[J* ]forseq[ .25( 'i + 'j + 'k + i' + j' + k' + 'ii' + 'jj' + 'kk' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + e ) ], em[J]forseq = A001834, vesforseq = (1,-1,1,-1). ForType 1A. Identity used: em[J]forseq + em[J* ]forseq = vesforseq.
Also indices of the centered triangular numbers which are triangular numbers - Richard Choulet, Oct 09 2007
Place a(n) red and b(n) blue balls in an urn; draw 2 balls without replacement. Probability(2 red balls) = 3*Probability(2 blue balls); b(n)=A101265(n). - Paul Weisenhorn, Aug 02 2010
FORMULA
2*a(n) - A001834(n) = (-1)^(n+1); a(n) = 4*a(n-1) - a(n) - 1;
G.f.: (2*x-1)/((x-1)*(x^2-4*x+1)).
Superseeker results: a(n+2) - 2a(n+1) + a(n) = A001834(n+1) (from this and the first relation involving A001834 it follows that 4a(n+1) - a(n+2) - a(n) = (-1)^n as well as the recurrence relation given for A001834 ); a(n+1) - a(n) = A001075(n+1); a(n+2) - a(n) = A082841(n+1).
a(j+3) - 3*a(j+2) - 3*a(j+1) + a(j) = -2 for all j.
a(n+1) = 2*a(n) - 1/2 + (1/2)*(12*a(n)^2 - 12*a(n) + 9)^(1/2). - Richard Choulet, Oct 09 2007
a(n) = (sqrt(12*b(n)*(b(n)-1) + 1) + 1)/2; b(n) = A101265(n). - Paul Weisenhorn, Aug 02 2010
a(n) = A001571(n) + 1. - Johannes Boot, Jun 17 2011
E.g.f.: (exp(2*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(x) + sinh(x))/2. - Stefano Spezia, Sep 19 2023
EXAMPLE
For n=5, a(5)=495; b(5)=286; binomial(495,2) = 122265 = 3*binomial(286,2). - Paul Weisenhorn, Aug 02 2010
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=4*a[n-1]-a[n-2]-1 od: seq(a[n], n=1..23); # Zerinvary Lajos, Mar 08 2008
MATHEMATICA
LinearRecurrence[{5, -5, 1}, {1, 3, 10}, 30] (* Harvey P. Dale, Oct 04 2011 *)
CROSSREFS
Cf. A001075 (first differences), A001834, A082841, A101265.
Sequence in context: A149040 A055989 A329533 * A371842 A277287 A119374
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Mar 01 2005
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy