OFFSET
1,3
COMMENTS
This sequence differs from the corresponding Fibonacci sequence (A046738) at all n that are multiples of 2 or 11 because the discriminant of the characteristic polynomial x^3-x^2-x-1 is -44.
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
FORMULA
Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
MATHEMATICA
n=3; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, May 02 2005
STATUS
approved