login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A110365
a(1)=2, a(n+1) = a(n)*A010888(a(n)).
1
2, 4, 16, 112, 448, 3136, 12544, 87808, 351232, 2458624, 9834496, 68841472, 275365888, 1927561216, 7710244864, 53971714048, 215886856192, 1511207993344, 6044831973376, 42313823813632, 169255295254528, 1184787066781696, 4739148267126784, 33174037869887488
OFFSET
1,1
COMMENTS
From a(2) onwards, the digital root follows the pattern alternately 4,7,4,7,4,7,...
FORMULA
a(1) = 2, a(2) = 4, a(3) = 16. a(2*n) = 4*a(2*n-1), a(2*n+1) = 7*a(2*n) for n > 1.
From Colin Barker, May 05 2016: (Start)
a(n) = 2^(-1+n)*(7^(1/2*(-3+n))*(2-2*(-1)^n + sqrt(7) + (-1)^n*sqrt(7))) for n > 1.
a(n) = 2^n*7^(n/2-1) for n > 1 and even.
a(n) = 2^(n+1)*7^((n-3)/2) for n > 1 and odd.
a(n) = 28*a(n-2) for n > 3.
G.f.: 2*x*(1+2*x-20*x^2) / (1-28*x^2).
(End)
E.g.f.: (-7 + 70*x + 7*cosh(2*Sqrt(7)*x) + 2*sqrt(7)*sinh(2*sqrt(7)*x))/49. - Ilya Gutkovskiy, May 05 2016
MATHEMATICA
k = 2; Do[Print[k]; k *= Mod[Plus @@ IntegerDigits[k], 9], {n, 1, 30}] (* Ryan Propper, Oct 13 2005 *)
LinearRecurrence[{0, 28}, {2, 4, 16}, 30] (* Harvey P. Dale, Mar 17 2019 *)
PROG
(PARI) Vec(2*x*(1+2*x-20*x^2)/(1-28*x^2) + O(x^50)) \\ Colin Barker, May 05 2016
CROSSREFS
Sequence in context: A297009 A135249 A318154 * A047892 A275911 A334351
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Jul 24 2005
EXTENSIONS
More terms from Ryan Propper, Oct 13 2005
Name clarified by Robert Israel, May 05 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy