login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A110557
Shadow of sqrt(2).
2
1, 15, 157, 170, 175, 181, 183, 186, 193, 223, 232, 282, 286, 294, 374, 390, 478, 550, 970, 1066, 2046, 2124, 2180, 3147, 3165, 3240, 3277, 3346, 3826, 3899, 3916, 3982, 4061, 4798, 5788, 6520, 6567, 6651, 6713, 6723, 6793, 6831, 7681, 8068, 8121, 8164
OFFSET
1,2
COMMENTS
First differences are sqrt(2)'s shadow. Never twice the same integer in sequence or first differences.
LINKS
EXAMPLE
The first line below is the sequence, the second gives the first differences:
1..15...157..170.175.181.183.186.193..223.232..282.286.294
.14..142...13...5...6...2...3...7...30...9...50...4...8 <- sqrt(2) shadow
sqrt(2) = 1.4142135623730950488016887242096980785696718753769...
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Block[{c = RealDigits[ Sqrt[2], 10, 300][[1]], k = 1, t = Table[a[i], {i, n - 1}]}, d = Drop[t, 1] - Drop[t, -1]; b = Drop[c, Length[ Flatten[ IntegerDigits /@ d]]]; e = Union[ Join[t, d]]; While[f = FromDigits[ Take[b, k]]; Position[e, f] != {} || b[[k + 1]] == 0, k++ ]; f + a[n - 1]]; Table[ a[n], {n, 46}] (* Robert G. Wilson v, Oct 10 2005 *)
CROSSREFS
Cf. A002193.
Sequence in context: A346843 A341918 A099915 * A016304 A016849 A300077
KEYWORD
easy,nonn,base
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Oct 10 2005
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy