login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A112032
Denominator of 3/4 + 1/4 - 3/8 - 1/8 + 3/16 + 1/16 - 3/32 - 1/32 + 3/64 ...
8
4, 1, 8, 2, 16, 4, 32, 8, 64, 16, 128, 32, 256, 64, 512, 128, 1024, 256, 2048, 512, 4096, 1024, 8192, 2048, 16384, 4096, 32768, 8192, 65536, 16384, 131072, 32768, 262144, 65536, 524288, 131072, 1048576, 262144, 2097152, 524288, 4194304, 1048576
OFFSET
0,1
COMMENTS
Denominator of partial sums of A112030(n)/A016116(n+4), numerators = A112031;
A112031(n)/a(n) - 2/3 = (-1)^floor(n/2) / A112033(n);
lim_{n->infinity} A112031(n)/a(n) = 2/3.
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148.
FORMULA
a(n) = 2^(floor(n/2) + 1 + (-1)^n) = 2^A084964(n).
Conjectures from Colin Barker, Apr 05 2013: (Start)
a(n) = 2*a(n-2).
G.f.: (x+4) / (1-2*x^2). (End)
MATHEMATICA
LinearRecurrence[{0, 2}, {4, 1}, 50] (* following conjecture in Formula field above *) (* Harvey P. Dale, Dec 21 2014 *)
PROG
(Magma) [2^(Floor(n/2) + 1 + (-1)^n): n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
(PARI) m=50; v=concat([4, 1], vector(m-2)); for(n=3, m, v[n]=2*v[n-2]); v \\ G. C. Greubel, Nov 08 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Aug 27 2005
EXTENSIONS
a(21) corrected by Vincenzo Librandi, Aug 17 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy