OFFSET
0,1
COMMENTS
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..3000
Index entries for linear recurrences with constant coefficients, signature (0,2).
FORMULA
a(n) = 2^(floor(n/2) + 1 + (-1)^n) = 2^A084964(n).
Conjectures from Colin Barker, Apr 05 2013: (Start)
a(n) = 2*a(n-2).
G.f.: (x+4) / (1-2*x^2). (End)
MATHEMATICA
LinearRecurrence[{0, 2}, {4, 1}, 50] (* following conjecture in Formula field above *) (* Harvey P. Dale, Dec 21 2014 *)
PROG
(Magma) [2^(Floor(n/2) + 1 + (-1)^n): n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
(PARI) m=50; v=concat([4, 1], vector(m-2)); for(n=3, m, v[n]=2*v[n-2]); v \\ G. C. Greubel, Nov 08 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Aug 27 2005
EXTENSIONS
a(21) corrected by Vincenzo Librandi, Aug 17 2011
STATUS
approved