login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A120118
a(n) is the number of binary strings of length n such that no subsequence of length 5 or less contains 3 or more ones.
6
1, 2, 4, 7, 11, 16, 26, 43, 71, 116, 186, 300, 487, 792, 1287, 2087, 3382, 5484, 8898, 14438, 23423, 37993, 61625, 99965, 162165, 263065, 426736, 692229, 1122903, 1821538, 2954849, 4793266, 7775472, 12613097, 20460538, 33190414, 53840404
OFFSET
0,2
FORMULA
a(n) = a(n-1) + a(n-3) + 2*a(n-5) - a(n-8) - a(n-10).
G.f.: 1 + x*(1+x+x^2)*(2+x^2+x^3-x^4-x^5-x^7)/(1-x-x^3-2*x^5+x^8+x^10). - R. J. Mathar, Nov 28 2011
EXAMPLE
This sequence is similar to A118647 - where no subsequence of length 4 contains 3 ones. It is obvious that the first 4 terms of these two sequences are the same. There are only 3 sequences of length 5 that contain 3 ones such that no subsequence of length 4 contains 3 ones: 10101, 11001, 10011. Hence the fifth term for this sequence is 3 less than the corresponding term of A118647.
MATHEMATICA
LinearRecurrence[{1, 0, 1, 0, 2, 0, 0, -1, 0, -1}, {1, 2, 4, 7, 11, 16, 26, 43, 71, 116, 186}, 50] (* Harvey P. Dale, Nov 27 2013 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1 +x*(1 +x+x^2)*(2+x^2+x^3-x^4-x^5-x^7)/(1-x-x^3-2*x^5+x^8+x^10) )); // G. C. Greubel, May 05 2023
(SageMath)
def A120118_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1 +x*(1+x+x^2)*(2+x^2+x^3-x^4-x^5-x^7)/(1-x-x^3-2*x^5 +
x^8+x^10) ).list()
A120118_list(40) # G. C. Greubel, May 05 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tanya Khovanova, Aug 15 2006, Oct 11 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy