login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A132758
a(n) = n*(n + 31)/2.
6
0, 16, 33, 51, 70, 90, 111, 133, 156, 180, 205, 231, 258, 286, 315, 345, 376, 408, 441, 475, 510, 546, 583, 621, 660, 700, 741, 783, 826, 870, 915, 961, 1008, 1056, 1105, 1155, 1206, 1258, 1311, 1365, 1420, 1476, 1533, 1591, 1650
OFFSET
0,2
FORMULA
a(n) = n*(n + 31)/2.
If we define f(n,i,r) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-r-j), then a(n) = -f(n,n-1,16) for n>=1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 15 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=16, a(2)=33; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 21 2012
a(n) = 16*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Amiram Eldar, Jan 11 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(31)/(31*A002805(31)) = 290774257297357/1119127534925400.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/31 - 7313175618421/159875362132200. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(15*x - 16)/(x-1)^3.
E.g.f.: exp(x)*x*(32 + x)/2.
a(n) = A132773(n)/2. (End)
MATHEMATICA
Table[(n(n+31))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 16, 33}, 50] (* Harvey P. Dale, Jun 21 2012 *)
PROG
(PARI) a(n)=n*(n+31)/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 28 2007
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy