login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A133146
Antidiagonal sums of the triangle A133128.
2
2, 5, 7, 14, 18, 29, 35, 50, 58, 77, 87, 110, 122, 149, 163, 194, 210, 245, 263, 302, 322, 365, 387, 434, 458, 509, 535, 590, 618, 677, 707, 770, 802, 869, 903, 974, 1010, 1085, 1123, 1202, 1242, 1325, 1367, 1454, 1498, 1589, 1635, 1730, 1778, 1877, 1927, 2030
OFFSET
0,1
FORMULA
First differences: a(n+1) - a(n) = A059029(n+1).
Bisections: a(2n+1) = A005918(n+1). a(2n) = A141631(n+1).
G.f.: (1+2*x)(2 - x + x^3)/((1-x)^3*(1+x)^2). - R. J. Mathar, Oct 15 2008
a(n) = 19/8 + 5*n/4 + 3*n^2/4 - (-1)^n*(n/4 + 3/8). - R. J. Mathar, Oct 15 2008
From Harvey P. Dale, Aug 26 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5); a(0)=2, a(1)=5, a(2)=7, a(3)=14, a(4)=18. (End)
EXAMPLE
a(2) = A133128(2,0) + A133128(1,1) = 10 - 3 = 7.
a(3) = A133128(3,0) + A133128(2,1) = 17 - 3 = 14.
MATHEMATICA
CoefficientList[Series[(1+2x)(2-x+x^3)/((1-x)^3(1+x)^2), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {2, 5, 7, 14, 18}, 60] (* Harvey P. Dale, Aug 26 2013 *)
PROG
(Magma) [19/8 +5*n/4 +3*n^2/4 -(-1)^n*(n/4+3/8): n in [0..60]]; // Vincenzo Librandi, Aug 10 2011
CROSSREFS
Sequence in context: A031457 A044990 A266259 * A217753 A022771 A132603
KEYWORD
nonn,less
AUTHOR
Paul Curtz, Aug 27 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Oct 15 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy