login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A134638
Row sums of triangle A134637.
2
1, 8, 28, 76, 182, 406, 868, 1808, 3706, 7522, 15176, 30508, 61198, 122606, 245452, 491176, 982658, 1965658, 3931696, 7863812, 15728086, 31456678, 62913908, 125828416, 251657482, 503315666, 1006632088, 2013264988, 4026530846, 8053062622, 16106126236
OFFSET
1,2
FORMULA
Binomial transform of [1, 7, 13, 15, 15, 15, ...].
G.f. x*(1+3*x-3*x^2+x^3) / ( (2*x-1)*(x-1)^3 ). - R. J. Mathar, Apr 04 2012
From Colin Barker, Nov 04 2017: (Start)
a(n) = -8 + 15*2^(n-1) - 5*n - n^2.
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>4.
(End)
EXAMPLE
a(3) = 28 = sum of row 3 terms of triangle A134637: 10 + 8 + 10.
a(3) = 28 = (1, 2, 1) dot (1, 8, 28) = (1 + 14 + 13).
MATHEMATICA
LinearRecurrence[{5, -9, 7, -2}, {1, 8, 28, 76}, 40] (* Harvey P. Dale, Feb 24 2018 *)
PROG
(PARI) Vec(x*(1 + 3*x - 3*x^2 + x^3) / ((1 - x)^3*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Nov 04 2017
CROSSREFS
Cf. A134637.
Sequence in context: A212565 A209408 A316214 * A293289 A305638 A331757
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Nov 04 2007
EXTENSIONS
Corrected by R. J. Mathar, Apr 04 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy