login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A154324
Diagonal sums of number triangle A113582.
1
1, 1, 2, 3, 6, 12, 23, 43, 74, 124, 195, 300, 441, 637, 890, 1226, 1647, 2187, 2848, 3673, 4664, 5874, 7305, 9021, 11024, 13390, 16121, 19306, 22947, 27147, 31908, 37348, 43469, 50405, 58158, 66879, 76570, 87400, 99371, 112671, 127302, 143472, 161183, 180664
OFFSET
0,3
FORMULA
G.f.: (1 -2*x -x^2 +5*x^3 -x^4 -2*x^5 +x^6)/((1-x)*(1-x^2))^3.
a(n) = Sum_{k=0..floor(n/2)} ( 1 + C(k+1,2)*C(n-2k+1,2) ).
From Colin Barker, Sep 12 2016: (Start)
a(n) = (2895 + 945*(-1)^n + (1786-90*(-1)^n)*n - 30*(3+(-1)^n)*n^2 + 40*n^3 + 30*n^4 + 4*n^5)/3840.
a(n) = (2*n^5+15*n^4+20*n^3-60*n^2+848*n+1920)/1920 for n even.
a(n) = (2*n^5+15*n^4+20*n^3-30*n^2+938*n+975)/1920 for n odd. (End)
MATHEMATICA
LinearRecurrence[{3, 0, -8, 6, 6, -8, 0, 3, -1}, {1, 1, 2, 3, 6, 12, 23, 43, 74}, 25] (* G. C. Greubel, Sep 11 2016 *)
CoefficientList[Series[(1 - 2 x - x^2 + 5 x^3 - x^4 - 2 x^5 + x^6) / ((1 - x) (1 - x^2))^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2016 *)
PROG
(PARI) Vec((1-2*x-x^2+5*x^3-x^4-2*x^5+x^6) / ((1-x)^6*(1+x)^3) + O(x^60)) \\ Colin Barker, Sep 12 2016
CROSSREFS
Sequence in context: A068012 A261930 A019138 * A338218 A001630 A293363
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jan 07 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy