login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A154996
a(n) = 5*a(n-1) + 20*a(n-2), n>2 ; a(0)=1, a(1)=1, a(2)=9.
6
1, 1, 9, 65, 505, 3825, 29225, 222625, 1697625, 12940625, 98655625, 752090625, 5733565625, 43709640625, 333219515625, 2540290390625, 19365842265625, 147635019140625, 1125491941015625, 8580160087890625, 65410639259765625
OFFSET
0,3
COMMENTS
The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009
FORMULA
G.f.: (1 -4*x -16*x^2)/(1 -5*x -20*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*4^(n-k).
MAPLE
m:=30; S:=series( (1-4*x-16*x^2)/(1-5*x-20*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 21 2021
MATHEMATICA
Join[{1}, LinearRecurrence[{5, 20}, {1, 9}, 20]] (* Harvey P. Dale, Jan 19 2012 *)
PROG
(Magma) I:=[1, 9]; [1] cat [n le 2 select I[n] else 5*(Self(n-1) +4*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 21 2021
(Sage)
def A154996_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-4*x-16*x^2)/(1-5*x-20*x^2) ).list()
A154996_list(30) # G. C. Greubel, Apr 21 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Jan 18 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy