login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A157746
Expansion of 1/(x^11 + x^10 + x^6 + x^5 + x^4 + x^2 + 1).
0
1, 0, -1, 0, 0, -1, 0, 2, 1, -1, -1, -1, -1, 0, 2, 4, 2, -4, -6, -2, 0, 2, 10, 11, -4, -17, -14, -4, 7, 22, 30, 11, -31, -57, -35, 15, 56, 80, 64, -32, -152, -160, -28, 136, 240, 228, 29, -312, -521, -324, 208, 691, 784, 358, -523, -1401, -1417, -149, 1631, 2560, 1826, -492, -3366, -4692
OFFSET
0,8
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. xxxiii.
FORMULA
G.f.: 1/(x^11 + x^10 + x^6 + x^5 + x^4 + x^2 + 1).
a(n) + a(n-2) + a(n-4) + a(n-5) + a(n-6) + a(n-10) + a(n-11) = 0. - Wesley Ivan Hurt, Dec 29 2023
MATHEMATICA
f[x_] = 1 + x + x^5 + x^6 + x^7 + x^9 + x^11;
g[x] = ExpandAll[x^11*f[1/x]];
a = Table[SeriesCoefficient[ Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]
CROSSREFS
Sequence in context: A302354 A000164 A330261 * A349082 A281010 A316864
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Mar 05 2009
EXTENSIONS
New name, Joerg Arndt, Mar 20 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy