login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A159341
Transform of the finite sequence (1, 0, -1, 0, 1) by the T_{0,1} transformation (see link).
2
2, 3, 6, 16, 39, 89, 206, 479, 1114, 2590, 6021, 13997, 32539, 75644, 175851, 408804, 950354, 2209305, 5136011, 11939777, 27756614, 64526299, 150005446, 348720354, 810676469, 1884594145, 4381149851, 10184937732, 23677107639, 55042597304
OFFSET
0,1
FORMULA
O.g.f: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4) + ((1-z+z^2)/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 7, with a(0)=2, a(1)=3, a(2)=6, a(3)=16, a(4)=39, a(5)=89, a(6)=206.
MAPLE
a(0):=2: a(1):=3:a(2):=6: a(3):=16:a(4):=39:a(5):=89:a(6):=206:for n from 4 to 31 do a(n+3):=3*a(n+2)-2*a(n+1)+a(n):od:seq(a(i), i=0..31);
MATHEMATICA
Join[{2, 3, 6, 16}, LinearRecurrence[{3, -2, 1}, {39, 89, 206}, 47]] (* G. C. Greubel, Jun 25 2018 *)
PROG
(PARI) z='z+O('z^30); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4) + ((1-z+z^2)/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 25 2018
(Magma) I:=[39, 89, 206]; [2, 3, 6, 16] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 25 2018
CROSSREFS
Sequence in context: A159340 A369560 A159343 * A159342 A089872 A006402
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 11 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy