login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A159350
Transform of A056594 by the T_{0,0} transformation (see link).
1
1, 1, 1, 4, 11, 24, 54, 127, 297, 689, 1600, 3721, 8652, 20112, 46753, 108689, 252673, 587392, 1365519, 3174448, 7379698, 17155715, 39882197, 92714861, 215535904, 501060185, 1164823608, 2707886360, 6295072049, 14634267033, 34020543361
OFFSET
0,4
FORMULA
O.g.f.: (1-z)^2/((1-3*z+2*z^2-z^3)*(1+z^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + 4*a(n-3) - 2*a(n-4) + a(n-5) for n >= 5, with a(0)=1, a(1)=1, a(2)=1, a(3)=4, a(4)=11.
MAPLE
a(0):=1: a(1):=1: a(2):=1: a(3):=4: a(4):=11: for n from 0 to 31 do a(n+5):=3*a(n+4)-3*a(n+3)+4*a(n+2)-2*a(n+1)+a(n): od: seq(a(i), i=0..31);
MATHEMATICA
LinearRecurrence[{3, -3, 4, -2, 1}, {1, 1, 1, 4, 11}, 50] (* G. C. Greubel, Jun 15 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x)^2/((1-3*x+2*x^2-x^3)*(1+x^2))) \\ G. C. Greubel, Jun 15 2018
(Magma) I:=[1, 1, 1, 4, 11]; [n le 5 select I[n] else 3*Self(n-1) - 3*Self(n-2) +4*Self(n-3) -2*Self(n-4) + Self(n-5): n in [1..50]]; // G. C. Greubel, Jun 15 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 11 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy