login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A163062
a(n) = ((3+sqrt(5))*(1+sqrt(5))^n + (3-sqrt(5))*(1-sqrt(5))^n)/2.
3
3, 8, 28, 88, 288, 928, 3008, 9728, 31488, 101888, 329728, 1067008, 3452928, 11173888, 36159488, 117014528, 378667008, 1225392128, 3965452288, 12832473088, 41526755328, 134383403008, 434873827328, 1407281266688
OFFSET
0,1
COMMENTS
Binomial transform of A163114. Inverse binomial transform of A163063.
FORMULA
a(n) = 2*a(n-1) + 4*a(n-2) for n > 1; a(0) = 3, a(1) = 8.
G.f.: (3+2*x)/(1-2*x-4*x^2).
a(n) = 2^n * A000032(n+2). - Diego Rattaggi, Jun 17 2020
MATHEMATICA
CoefficientList[Series[(3+2*x)/(1-2*x-4*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 4}, {3, 8}, 30] (* G. C. Greubel, Dec 22 2017 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-5); S:=[ ((3+r)*(1+r)^n+(3-r)*(1-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
(Magma) I:=[3, 8]; [n le 2 select I[n] else 2*Self(n-1) + 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 22 2017
(PARI) x='x+O('x^30); Vec((3+2*x)/(1-2*x-4*x^2)) \\ G. C. Greubel, Dec 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy