login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164539
a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
3
1, 13, 33, 157, 545, 2189, 8193, 31709, 120769, 463501, 1772385, 6789277, 25985249, 99495437, 380887617, 1458243293, 5582699905, 21373102861, 81825105057, 313261930141, 1199299595681, 4591432702349, 17577962574465, 67295954065373
OFFSET
0,2
COMMENTS
Binomial transform of A164675. Inverse binomial transform of A164540.
Pisano period lengths: 1, 1, 8, 1, 24, 8, 3, 2, 24, 24, 15, 8, 168, 3, 24, 2, 4, 24, 120, 24, ... - R. J. Mathar, Aug 10 2012
LINKS
Vincenzo Librandi and Harvey P. Dale, Table of n, a(n) for n = 0..1000 (Vincenzo Librandi to 177)
FORMULA
a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
G.f.: (1+11*x)/(1-2*x-7*x^2).
a(n) = ((1+3*sqrt(2))*(1+2*sqrt(2))^n + (1-3*sqrt(2))*(1-2*sqrt(2))^n)/2.
a(n) = 11*A015519(n) + A015519(n+1). - R. J. Mathar, Aug 10 2012
MATHEMATICA
LinearRecurrence[{2, 7}, {1, 13}, 50] (* Harvey P. Dale, Oct 16 2011 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+3*r)*(1+2*r)^n+(1-3*r)*(1-2*r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009
CROSSREFS
Sequence in context: A204707 A282686 A124659 * A245170 A134864 A093100
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 20 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy