login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A170361
Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.
0
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406250000, 138396093750000, 2075941406250000, 31139121093750000, 467086816406250000, 7006302246093750000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170735, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, -105).
FORMULA
G.f. (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 +
2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(105*t^43 - 14*t^42 - 14*t^41 - 14*t^40 - 14*t^39 -
14*t^38 - 14*t^37 - 14*t^36 - 14*t^35 - 14*t^34 - 14*t^33 - 14*t^32 -
14*t^31 - 14*t^30 - 14*t^29 - 14*t^28 - 14*t^27 - 14*t^26 - 14*t^25 -
14*t^24 - 14*t^23 - 14*t^22 - 14*t^21 - 14*t^20 - 14*t^19 - 14*t^18 -
14*t^17 - 14*t^16 - 14*t^15 - 14*t^14 - 14*t^13 - 14*t^12 - 14*t^11 -
14*t^10 - 14*t^9 - 14*t^8 - 14*t^7 - 14*t^6 - 14*t^5 - 14*t^4 - 14*t^3 -
14*t^2 - 14*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[42]]+t^43+1, den=Total[-14 t^Range[42]]+105t^43+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Oct 14 2013 *)
CROSSREFS
Sequence in context: A170217 A170265 A170313 * A170409 A170457 A170505
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy