login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A170608
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^48 = I.
0
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f. (t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 +
2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(231*t^48 - 21*t^47 - 21*t^46 - 21*t^45 - 21*t^44 - 21*t^43 - 21*t^42
- 21*t^41 - 21*t^40 - 21*t^39 - 21*t^38 - 21*t^37 - 21*t^36 - 21*t^35 -
21*t^34 - 21*t^33 - 21*t^32 - 21*t^31 - 21*t^30 - 21*t^29 - 21*t^28 -
21*t^27 - 21*t^26 - 21*t^25 - 21*t^24 - 21*t^23 - 21*t^22 - 21*t^21 -
21*t^20 - 21*t^19 - 21*t^18 - 21*t^17 - 21*t^16 - 21*t^15 - 21*t^14 -
21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 -
21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1)
MATHEMATICA
coxG[{48, 231, -21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 25 2019 *)
CROSSREFS
Sequence in context: A170464 A170512 A170560 * A170656 A170704 A170742
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy