login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A170780
a(n) = n^8*(n^8 + 1)/2.
2
0, 1, 32896, 21526641, 2147516416, 76294140625, 1410555793536, 16616468167201, 140737496743936, 926510115949281, 5000000050000000, 22974865038965521, 92442129662509056, 332708304999455281, 1088976669642580096
OFFSET
0,3
COMMENTS
Number of unoriented rows of length 16 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=32896, there are 2^16=65536 oriented arrangements of two colors. Of these, 2^8=256 are achiral. That leaves (65536-256)/2=32640 chiral pairs. Adding achiral and chiral, we get 32896. - Robert A. Russell, Nov 13 2018
LINKS
Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
FORMULA
G.f.: (x + 32879*x^2 + 20967545*x^3 + 1786036695*x^4 + 42691617829* x^5 + 391057805899*x^6 + 1603741496717*x^7 + 3191399514435*x^8 + 3191399514435*x^9 + 1603741496717*x^10 + 391057805899*x^11 + 42691617829*x^12 + 1786036695*x^13 + 20967545*x^14 + 32879*x^15 + x^16) /(1-x)^17. - G. C. Greubel, Dec 05 2017
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010804(n) + A001016(n)) / 2 = (n^16 + n^8) / 2.
G.f.: (Sum_{j=1..16} S2(16,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..8} S2(8,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..15} A145882(16,k) * x^k / (1-x)^17.
E.g.f.: (Sum_{k=1..16} S2(16,k)*x^k + Sum_{k=1..8} S2(8,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>16, a(n) = Sum_{j=1..17} -binomial(j-18,j) * a(n-j). (End)
MATHEMATICA
Table[n^8*(n^8+1)/2, {n, 0, 30}] (* G. C. Greubel, Dec 05 2017 *)
PROG
(Magma) [n^8*(n^8+1)/2: n in [0..30]]; // Vincenzo Librandi, Aug 26 2011
(PARI) for(n=0, 30, print1(n^8*(n^8+1)/2, ", ")) \\ G. C. Greubel, Dec 05 2017
(Sage) [n^8*(n^8+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
(GAP) List([0..30], n -> n^8*(n^8+1)/2); # G. C. Greubel, Nov 15 2018
(Python) for n in range(0, 20): print(int(n**8*(n**8 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
CROSSREFS
Row 16 of A277504.
Cf. A010804 (oriented), A001016 (achiral).
Sequence in context: A230524 A168666 A353019 * A251407 A132992 A153748
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy