login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A173855
a(n) = A173039(n+4) - A173039(n+1).
1
8, 4, 24, 40, 12, 56, 72, 20, 88, 104, 28, 120, 136, 36, 152, 168, 44, 184, 200, 52, 216, 232, 60, 248, 264, 68, 280, 296, 76, 312, 328, 84, 344, 360, 92, 376, 392, 100, 408, 424, 108, 440, 456, 116, 472, 488, 124, 504, 520, 132, 536, 552, 140, 568, 584, 148
OFFSET
1,1
COMMENTS
From Balmer odd terms. Note that ( (a(n+1)=8,) - (Balmer A061037 odd numbers = A173039(n+4) = 5, ) = 3, 1, 3, -5, -3, -21, ... = -A173039.
FORMULA
a(n) = 4*A173773(n).
a(n) = 2*a(n-3) - a(n-6). - Colin Barker, Oct 15 2014
G.f.: 4*x*(x+1)*(2*x^4 - x^3 + 7*x^2 - x + 2) / ((x-1)^2*(x^2 + x + 1)^2). - Colin Barker, Oct 15 2014
EXAMPLE
a(1) = 5 - (-3) = 8, a(2) = 3 - (-1) = 4, a(3) = 21 - (-3) = 24.
MAPLE
a:= LREtools[REtoproc](f(n) = 2*f(n-3)-f(n-6), f(n), zip((s, t)->f(s)=t, [$1..6], [8, 4, 24, 40, 12, 56]), remember):
seq(a(n), n=1..100); # Robert Israel, Oct 15 2014
MATHEMATICA
Rest[CoefficientList[Series[4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2 +x+1)^2), {x, 0, 50}], x]] (* G. C. Greubel, Sep 20 2018 *)
PROG
(PARI) Vec(4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Oct 15 2014
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2+x+1)^2))); // G. C. Greubel, Sep 20 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 26 2010
EXTENSIONS
More terms from Colin Barker, Oct 15 2014
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy