login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A173963
Number of nonoverlapping placements of one 1 X 1 square and one 2 X 2 square on an n X n board.
2
0, 0, 20, 108, 336, 800, 1620, 2940, 4928, 7776, 11700, 16940, 23760, 32448, 43316, 56700, 72960, 92480, 115668, 142956, 174800, 211680, 254100, 302588, 357696, 420000, 490100, 568620, 656208, 753536, 861300, 980220, 1111040, 1254528
OFFSET
1,3
COMMENTS
Also the number of placements of a horizontal and a vertical domino on the n X n board. - Ralf Stephan, Jun 10 2014
FORMULA
a(n) = (n^2 - 4) * (n-1)^2.
a(n) = A000290(n-1)*A028347(n) = A085740(n-1)/4;
a(n) = A002378(n-2)*A028552(n-1), for n > 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(1)=0, a(2)=0, a(3)=20, a(4)=108, a(5)=336. - Harvey P. Dale, Aug 16 2011
G.f.: (4*x^3*((x-2)*x-5))/(x-1)^5. - Harvey P. Dale, Aug 16 2011
MATHEMATICA
Table[(n^2-4)(n-1)^2, {n, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 20, 108, 336}, 40] (* Harvey P. Dale, Aug 16 2011 *)
PROG
(Magma) [(n^2 - 4) * (n-1)^2: n in [1..40]]; // Vincenzo Librandi, Sep 14 2011
CROSSREFS
Sequence in context: A209547 A278642 A135174 * A202957 A232586 A189437
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Mar 03 2010
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy