login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A184327
a(1)=1, a(2)=17; thereafter a(n) = 6*a(n-1)-a(n-2)+c, where c=-4 if n is odd, c=12 if n is even.
1
1, 17, 97, 577, 3361, 19601, 114241, 665857, 3880897, 22619537, 131836321, 768398401, 4478554081, 26102926097, 152139002497, 886731088897, 5168247530881, 30122754096401, 175568277047521, 1023286908188737, 5964153172084897, 34761632124320657
OFFSET
1,2
LINKS
J. V. Leyendekkers and A. G. Shannon, Pellian sequence relationships among pi, e, sqrt(2), Notes on Number Theory and Discrete Mathematics, Vol. 18, 2012, No. 2, 58-62. See Table 3, {y_n}.
FORMULA
From Bruno Berselli, Dec 26 2012: (Start)
G.f.: x*(1+11*x-5*x^2+x^3)/((1-x)*(1+x)*(1-6*x+x^2)).
a(n) = a(-n) = 6*a(n-1)-6*a(n-3)+a(n-4).
a(n) = ((1+sqrt(2))^(2n)+(1-sqrt(2))^(2n))/2+(-1)^n-1.
a(n) = 2*A090390(n)-1. (End)
MATHEMATICA
CoefficientList[Series[(1 + 11 x - 5 x^2 + x^3)/((1 - x) (1 + x) (1 - 6 x + x^2)), {x, 0, 24}], x] (* Bruno Berselli, Dec 26 2012 *)
PROG
(Magma) /* By definition: */ a:=[1, 17]; c:=func<n | IsOdd(n) select -4 else 12>; [n le 2 select a[n] else 6*Self(n-1)-Self(n-2)+c(n): n in [1..22]]; // Bruno Berselli, Dec 26 2012
CROSSREFS
Sequence in context: A165347 A008514 A152913 * A331877 A358572 A262207
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 2012
EXTENSIONS
Edited from Bruno Berselli, Dec 26 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy