login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A188530
2^(2n+1)-5*2^(n-1)-1.
2
2, 21, 107, 471, 1967, 8031, 32447, 130431, 523007, 2094591, 8383487, 33544191, 134197247, 536829951, 2147401727, 8589770751, 34359410687, 137438298111, 549754503167, 2199020634111
OFFSET
1,1
COMMENTS
Starting with n=2, binary palindromic numbers of the form (n-1)010(n-1) where n is the index and the number of 1's
FORMULA
a(n) = 2^(2n+1)-2^(n+1)-2^(n-1)-1.
A052539(n) = a(n)-2*a(n-1) for n>1.
a(n)= +7*a(n-1) -14*a(n-2) +8*a(n-3). G.f. ( x*(-2-7*x+12*x^2) ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Apr 04 2011
a(n) = 2*4^n - 5*2^(n-1) - 1. - Karl V. Keller, Jr., Jun 09 2022
EXAMPLE
first 6 term in binary starting with n=2 are 10101,1101011,111010111,11110101111,1111101011111,111111010111111
MATHEMATICA
Table[2^(2n+1)-5 2^(n-1)-1, {n, 20}] (* or *) Rest[CoefficientList[ Series[(x(-2-7x+12x^2))/((x-1)(2x-1)(4x-1)), {x, 0, 20}], x]] (* Harvey P. Dale, Apr 19 2011 *)
PROG
(Python) print([2*4**n - 5*2**(n-1) - 1 for n in range(1, 50)]) # Karl V. Keller, Jr., Jun 09 2022
CROSSREFS
Cf. A267705.
Sequence in context: A077209 A369754 A068045 * A178328 A091789 A109789
KEYWORD
nonn,easy
AUTHOR
Brad Clardy, Apr 03 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy