login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A192760
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
5
0, 1, 4, 9, 18, 33, 58, 99, 166, 275, 452, 739, 1204, 1957, 3176, 5149, 8342, 13509, 21870, 35399, 57290, 92711, 150024, 242759, 392808, 635593, 1028428, 1664049, 2692506, 4356585, 7049122, 11405739, 18454894, 29860667, 48315596, 78176299
OFFSET
0,3
COMMENTS
The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+n+2 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.
Form an array with m(1,j) = m(j,1) = j for j >= 1 in the top row and left column, and internal terms m(i,j) = m(i-1,j-1) + m(i-1,j). The sum of the terms in the n-th antidiagonal is a(n). - J. M. Bergot, Nov 07 2012
FORMULA
a(n) = 2*A000045(n+3)-n-4. G.f. x*(-1-x+x^2) / ( (x^2+x-1)*(x-1)^2 ). - R. J. Mathar, Nov 09 2012
a(n) = Sum_{1..n} C(n-i+2,i+1) + C(n-i,i). - Wesley Ivan Hurt, Sep 13 2017
MATHEMATICA
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A001594 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192760 *)
CROSSREFS
Sequence in context: A301101 A266340 A266339 * A295964 A292765 A357282
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 09 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy