login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195116
a(n) = (2+3^n)*(3+2^n).
1
12, 25, 77, 319, 1577, 8575, 48977, 286759, 1699817, 10137775, 60645377, 363332599, 2178384857, 13065493375, 78378545777, 470228096839, 2821239178697, 16927047127375, 101561119454177, 609363227843479, 3656168902513337, 21936982025631775
OFFSET
0,1
FORMULA
G.f.: (12-119*x+341*x^2-294*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-6*x)).
Sum_{i=0..n} a(i) = (1/10)*(12*6^n+45*3^n+40*2^n+60*n+23).
MATHEMATICA
Table[(2 + 3^n) (3 + 2^n), {n, 0, 30}] (* Vincenzo Librandi, Mar 26 2013 *)
PROG
(Magma) [(2+3^n)*(3+2^n): n in [0..21]];
(PARI) for(n=0, 21, print1((2+3^n)*(3+2^n)", "));
(Python)
def a(n): return (2+3**n)*(3+2**n)
print([a(n) for n in range(23)]) # Michael S. Branicky, Dec 25 2021
CROSSREFS
Cf. A060013 ((1+2^n)*(2+1) with n>3).
Cf. A021029 (for the recurrence).
Sequence in context: A292493 A042869 A041282 * A041284 A171069 A042193
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Sep 09 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy