login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A212681
Number of (w,x,y,z) with all terms in {1,...,n} and |x-y|<|y-z|.
2
0, 0, 4, 24, 88, 230, 504, 966, 1696, 2772, 4300, 6380, 9144, 12714, 17248, 22890, 29824, 38216, 48276, 60192, 74200, 90510, 109384, 131054, 155808, 183900, 215644, 251316, 291256, 335762, 385200, 439890, 500224, 566544, 639268
OFFSET
0,3
COMMENTS
Also, the number of (w,x,y,z) with all terms in {1,...,n} and |x-y|>|y-z|.
Every term is even.
For a guide to related sequences, see A211795.
FORMULA
a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
G.f.: (4*x^2 + 12*x^3 + 20*x^4 + 10*x^5 + 2*x^6)/(1 - 3*x + x^2 + 5*x^3 - 5*x^4 - x^5 + 3*x^6 - x^7).
a(n) + A212682(n) = n^4.
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[x - y] < Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212681 *)
%/2 (* integers *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 0, 4, 24, 88, 230, 504}, 40]
CROSSREFS
Sequence in context: A005561 A061612 A097875 * A026694 A026967 A026977
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 24 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy