login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A213046
Convolution of Lucas numbers and positive integers repeated (A000032 and A008619).
1
2, 3, 8, 13, 25, 41, 71, 116, 193, 314, 514, 834, 1356, 2197, 3562, 5767, 9339, 15115, 24465, 39590, 64067, 103668, 167748, 271428, 439190, 710631, 1149836, 1860481, 3010333, 4870829, 7881179, 12752024, 20633221, 33385262, 54018502, 87403782, 141422304
OFFSET
0,1
FORMULA
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5).
G.f.: (-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)).
a(n) = (-9/4 + (3*(-1)^n)/4 + (2^(-n)*((1-t)^n*(-5+2*t) + (1+t)^n*(5+2*t)))/t + (-1-n)/2) where t=sqrt(5). - Colin Barker, Feb 09 2017
MATHEMATICA
f[x_] := (1 + x) (1 - x)^2; g[x] := 1 - x - x^2;
s = Normal[Series[(2 - x)/(f[x] g[x]), {x, 0, 60}]]
CoefficientList[s, x] (* A213046 *)
LinearRecurrence[{2, 1, -3, 0, 1}, {2, 3, 8, 13, 25}, 40] (* Harvey P. Dale, Aug 31 2023 *)
PROG
(Magma) /* By definition */ A008619:=func<n | 1+Floor(n/2)>; [&+[A008619(i)*Lucas(n-i): i in [0..n]]: n in [0..34]];
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; 1, 0, -3, 1, 2]^n*[2; 3; 8; 13; 25])[1, 1] \\ Charles R Greathouse IV, Jan 29 2016
(PARI) Vec((-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)) + O(x^60)) \\ Colin Barker, Feb 09 2017
CROSSREFS
Cf. A213500.
Sequence in context: A147417 A147357 A004138 * A262021 A221181 A116503
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 10 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy