login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A216861
a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6).
4
0, -2, -9, -44, -215, -1001, -4446, -19058, -79677, -327418, -1329601, -5355272, -21446945, -85548138, -340268656, -1350664731, -5353389340, -21195056584, -83846301409, -331483318257, -1309872510973, -5174049465897, -20431456722794, -80660347594658
OFFSET
1,2
COMMENTS
a(n) is equal to the rational part (with respect of the field Q(sqrt(13))) of the product sqrt(2*(13 + 3*sqrt(13)))*X(2*n-1)/13, where X(n) = sqrt((13-3*sqrt(13))/2)*X(n-1) + sqrt(13)*X(n-2) - sqrt((13+3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13-3*sqrt(13))/2), and X(2)=-(13+sqrt(13))/2.
The sequence X(n) is defined in almost the same way as sequence Y(n) from the comments to A161905. The only difference is in the initial condition X(2) = -Y(2).
REFERENCES
Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
FORMULA
G.f.: -x^2*(26*x^4-84*x^3+57*x^2-17*x+2) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013
EXAMPLE
We have a(3)-5*a(2)=a(4)-5a(3)=1, a(5)-5*a(4)=5, and 19000 + a(8) = a(4) + 2*a(3) - 2*a(2).
MATHEMATICA
LinearRecurrence[{13, -65, 156, -182, 91, -13}, {0, -2, -9, -44, -215, -1001}, 25] (* Paolo Xausa, Feb 23 2024 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roman Witula, Sep 18 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy