login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A217154
Number of perfect squared rectangles of order n up to symmetries of the rectangle.
9
0, 0, 0, 0, 0, 0, 0, 0, 2, 14, 62, 235, 821, 2868, 10193, 36404, 130174, 466913, 1681999, 6083873
OFFSET
1,9
COMMENTS
A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares.
A squared rectangle is simple if it does not contain a smaller squared rectangle, compound if it does, and trivially compound if a constituent square has the same side length as a side of the squared rectangle under consideration.
REFERENCES
See crossrefs for references and links.
FORMULA
a(n) = A002839(n) + A217153(n) + A217375(n).
a(n) >= 2*a(n-1) + A002839(n) + 2*A002839(n-1) + A217153(n) + 2*A217153(n-1), with equality for n<19.
EXAMPLE
a(10) = 14 comprises the A002839(10) = 6 simple perfect squared rectangles (SPSRs) of order 10 and the 8 trivially compound perfect squared rectangles which each comprises one of the two order 9 SPSRs and one other square.
CROSSREFS
Cf. A110148 (counts symmetries of any squared subrectangles as equivalent).
Sequence in context: A095376 A153332 A331822 * A144657 A362157 A167555
KEYWORD
nonn,hard,more
AUTHOR
Geoffrey H. Morley, Sep 27 2012
EXTENSIONS
a(19) and a(20) corrected by Geoffrey H. Morley, Oct 12 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy