login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A226432
The number of simple permutations of length n in a particular geometric grid class.
4
1, 2, 0, 2, 3, 7, 13, 25, 46, 84, 151, 269, 475, 833, 1452, 2518, 4347, 7475, 12809, 21881, 37274, 63336, 107375, 181657, 306743, 517057, 870168, 1462250, 2453811, 4112479, 6884101, 11510809, 19226950, 32084028, 53489287, 89097893, 148290067, 246615425, 409835844, 680609086
OFFSET
1,2
COMMENTS
This geometric grid class is given by the array [[0,0,1,0],[0,0,0,1],[0,1,-1,0],[1,0,0,-1]]. A picture is given in the LINKS section.
The sequence of all permutations in this class is given by A226431.
FORMULA
G.f.: x+2*x^2+ x^4*(1-x)*(2+x)/(1-x-x^2)^2 (corrected, Joerg Arndt, Jun 26 2013)
a(n) = A191830(n+2)-A000045(n+2), n>=4. - R. J. Mathar, Aug 31 2013
MATHEMATICA
Join[{1, 2}, LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 7}, 40]] (* Jean-François Alcover, Jul 21 2018 *)
PROG
(PARI) x='x+O('x^66); Vec(x+2*x^2+(x^4*(1-x)*(2+x))/((1-x-x^2)^2) ) \\ Joerg Arndt, Jun 19 2013
CROSSREFS
Sequence in context: A222753 A274568 A233399 * A072514 A071547 A220222
KEYWORD
nonn,easy
AUTHOR
Jay Pantone, Jun 06 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy