login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A246961
Numerator of the expected number of random moves in Tower of Hanoi problem with n disks starting at a randomly chosen valid configuration and ending with all disks at peg 1.
0
0, 4, 146, 3034, 52916, 857824, 13426406, 206324374, 3138660776, 47471139964, 715573119866, 10765074628114, 161759034582236, 2428929817996504, 36456836245518926, 547058495778290254, 8207730761823753296, 123132640134289171444, 1847139704277091999586, 27708446454015214334794, 415638854666404701309956
OFFSET
0,2
COMMENTS
The expected number of random moves is given by a(n)/3^n = a(n)/A000244(n).
LINKS
M. A. Alekseyev and T. Berger, Solving the Tower of Hanoi with Random Moves. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Princeton University Press, 2016, pp. 65-79. ISBN 978-0-691-16403-8
FORMULA
a(n) = ( (3^n - 1)*(5^(n+1) - 2*3^(n+1)) + 5^n - 3^n ) / 4.
a(n) = 3^n*A007798(n) + 2*A134939(n).
G.f.: -2*x*(135*x^2-9*x-2) / ((3*x-1)*(5*x-1)*(9*x-1)*(15*x-1)). - Colin Barker, Sep 17 2014
PROG
(PARI) concat(0, Vec(-2*x*(135*x^2-9*x-2)/((3*x-1)*(5*x-1)*(9*x-1)*(15*x-1)) + O(x^100))) \\ Colin Barker, Sep 17 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 08 2014
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy