login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A247541
a(n) = 7*n^2 + 1.
1
1, 8, 29, 64, 113, 176, 253, 344, 449, 568, 701, 848, 1009, 1184, 1373, 1576, 1793, 2024, 2269, 2528, 2801, 3088, 3389, 3704, 4033, 4376, 4733, 5104, 5489, 5888, 6301, 6728, 7169, 7624, 8093, 8576, 9073, 9584, 10109, 10648, 11201, 11768, 12349, 12944, 13553
OFFSET
0,2
FORMULA
G.f.: (1 + 5*x + 8*x^2)/(1 - x)^3. - Vincenzo Librandi, Sep 19 2014
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(7))*coth(Pi/sqrt(7)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(7))*csch(Pi/sqrt(7)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(7))*sinh(sqrt(2/7)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(7))*csch(Pi/sqrt(7)). (End)
E.g.f.: exp(x)*(1 + 7*x + 7*x^2). - Stefano Spezia, Feb 05 2021
MATHEMATICA
a247541[n_Integer] := 7 n^2 + 1; a247541 /@ Range[0, 120] (* Michael De Vlieger, Sep 18 2014 *)
CoefficientList[Series[(1 + 5 x + 8 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 19 2014 *)
LinearRecurrence[{3, -3, 1}, {1, 8, 29}, 50] (* Harvey P. Dale, Jun 09 2015 *)
PROG
(Python)
for n in range (0, 500) : print (7*n**2+1)
(PARI) vector(100, n, 7*(n-1)^2+1) \\ Derek Orr, Sep 18 2014
(Magma) [7*n^2+1: n in [0..50]]; // Vincenzo Librandi, Sep 19 2014
CROSSREFS
Cf. A201602 (primes of the form 7n^2 + 1).
Sequence in context: A300310 A171442 A341402 * A320695 A093809 A244244
KEYWORD
nonn,easy
AUTHOR
Karl V. Keller, Jr., Sep 18 2014
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy