login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A255501
a(n) = (n^9 + 5*n^8 + 4*n^7 - n^6 - 5*n^5 + 2*n^4)/6.
3
0, 1, 352, 9909, 107776, 698125, 3252096, 12045817, 37679104, 103495401, 256420000, 584190541, 1241471232, 2487920149, 4741917376, 8654360625, 15207694336, 25846158097, 42644120544, 68520305701, 107506720000, 165082149981, 248581222912, 367691205289
OFFSET
0,3
LINKS
L. Kaylor and D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645, see Theorem 6.1. [DOI]
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = n^4 * (n^5 + 5*n^4 + 4*n^3 - n^2 - 5*n + 2)/6.
G.f.: x*(1 +342*x +6434*x^2 +24406*x^3 +24240*x^4 +5354*x^5 -242*x^6 -54*x^7 -x^8)/(1-x)^10. - Colin Barker, Mar 14 2015
E.g.f.: (x/6)* (6 +1050*x +8856*x^2 +17562*x^3 +12741*x^4 +4059*x^5 +606*x^6 +41*x^7 +x^8)*exp(x). - G. C. Greubel, Sep 24 2021
MAPLE
fp:=n->(n^9+5*n^8+4*n^7-n^6-5*n^5+2*n^4)/6;
[seq(fp(n), n=0..40)];
MATHEMATICA
Table[n^4*(n^5 +5*n^4 +4*n^3 -n^2 -5*n +2)/6, {n, 0, 30}] (* G. C. Greubel, Sep 24 2021 *)
PROG
(Python)
# requires Python 3.2 or higher
from itertools import accumulate
A255501_list, m = [0], [60480, -208320, 273840, -168120, 45420, -2712, -648, 62, -1, 0]
for _ in range(10**2):
....m = list(accumulate(m))
A255501_list.append(m[-1]) # Chai Wah Wu, Mar 14 2015
(PARI)
concat(0, Vec(x*(1 +342*x +6434*x^2 +24406*x^3 +24240*x^4 +5354*x^5 -242*x^6 -54*x^7 -x^8)/(1-x)^10 + O(x^100))) \\ Colin Barker, Mar 14 2015
(Sage) [n^4*(n^5 +5*n^4 +4*n^3 -n^2 -5*n +2)/6 for n in (0..30)] # G. C. Greubel, Sep 24 2021
CROSSREFS
Sequence in context: A256025 A256771 A256764 * A229740 A255500 A377770
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 13 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy