login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A263790
The number of length-n permutations avoiding the patterns 1234, 1324 and 2143.
1
1, 1, 2, 6, 21, 75, 268, 958, 3425, 12245, 43778, 156514, 559565, 2000543, 7152292, 25570698, 91419729, 326841561, 1168515890, 4177649198, 14935828405, 53398205443, 190907947468, 682529386598, 2440162233937, 8724007852045, 31189857766034, 111509210441322, 398664979703373
OFFSET
0,3
LINKS
C. Bean, M. Tannock and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015, eq. (4).
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 181.
FORMULA
G.f.: (2*x^3 + 3*x - 1)/(-x^4 + 2*x^3 - 2*x^2 + 4*x - 1).
MAPLE
t1:=(1-3*x-2*x^3)/(1-4*x+2*x^2-2*x^3+x^4);
series(t1, x, 40);
seriestolist(%); # N. J. A. Sloane, Nov 09 2016
MATHEMATICA
LinearRecurrence[{4, -2, 2, -1}, {1, 1, 2, 6}, 30] (* Jean-François Alcover, Dec 31 2015 *)
CoefficientList[Series[(2 x^3 + 3 x - 1)/(-x^4 + 2*x^3 - 2 x^2 + 4 x - 1), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 01 2016 *)
PROG
(PARI) Vec((2*x^3 + 3*x - 1)/(-x^4 + 2*x^3 - 2*x^2 + 4*x - 1) + O(x^50)) \\ Michel Marcus, Nov 23 2015
(Magma) I:=[1, 1, 2, 6]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jan 01 2016
CROSSREFS
Sequence in context: A289597 A116743 A294816 * A247416 A105872 A304781
KEYWORD
nonn,easy
AUTHOR
Christian Bean, Nov 23 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy