login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A264147
a(n) = n*F(n+1) - (n+1)*F(n), where F = A000045.
3
0, -1, 1, 1, 5, 10, 22, 43, 83, 155, 285, 516, 924, 1639, 2885, 5045, 8773, 15182, 26162, 44915, 76855, 131119, 223101, 378696, 641400, 1084175, 1829257, 3081193, 5181893, 8702290, 14594830, 24446971, 40902299, 68359619, 114132765, 190373580, 317258388, 528265207
OFFSET
0,5
COMMENTS
a(n) is prime for n = 4, 7, 8, 26, 28, 52, 86, 87, 93, 97, 158, 196, 303, 2908, 3412, 4111, 4208, 6183, 6337, 9878, ...
FORMULA
G.f.: x*(-1 + 3*x)/(1 - x - x^2)^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4).
a(n) = n*F(n-1) - F(n).
a(n) = Sum_{i=0..n} F(i)*L(n-1-i), where L() is a Lucas number (A000032).
a(n) = 3*A001629(n) - A001629(n+1).
a(n) = -(-1)^n*A178521(-n).
a(n+2) - a(n) = A007502(n+1).
Sum_{i>0} 1/a(i) = 1.39516607051636028893879220294180374...
a(n) = (-((1+sqrt(5))/2)^n*(2*sqrt(5) + (-5+sqrt(5))*n) + ((1-sqrt(5))/2)^n*(2*sqrt(5) + (5+sqrt(5))*n)) / 10. - Colin Barker, Jul 27 2017
a(n) = (-i)^n*(n*sin(c*(n+1)) - (n+1)*sin(c*n)*i)/sqrt(5/4) where c = arccos(i/2). - Peter Luschny, May 16 2022
MAPLE
A264147 := proc(n)
n*combinat[fibonacci](n+1)-(n+1)*combinat[fibonacci](n) ;
end proc:
seq(A264147(n), n=0..10) ; # R. J. Mathar, Jun 02 2022
MATHEMATICA
Table[n Fibonacci[n + 1] - (n + 1) Fibonacci[n], {n, 0, 40}]
PROG
(PARI) for(n=0, 40, print1(n*fibonacci(n+1)-(n+1)*fibonacci(n)", "));
(Sage) [n*fibonacci(n+1)-(n+1)*fibonacci(n) for n in (0..40)]
(Maxima) makelist(n*fib(n+1)-(n+1)*fib(n), n, 0, 40);
(Magma) [n*Fibonacci(n+1)-(n+1)*Fibonacci(n): n in [0..40]];
(PARI) concat(0, Vec(-x*(1 - 3*x) / (1 - x - x^2)^2 + O(x^50))) \\ Colin Barker, Jul 27 2017
(Julia) # The function 'fibrec' is defined in A354044.
function A264147(n)
n == 0 && return BigInt(0)
a, b = fibrec(n)
n*b - a*(n + 1)
end # Peter Luschny, May 16 2022
CROSSREFS
Cf. A178521: n*F(n+1) + (n+1)*F(n).
Cf. A094588: n*F(n-1) + F(n).
Cf. A099920: Sum_{i=0..n} F(i)*L(n-i).
Cf. A023607: Sum_{i=0..n} F(i)*L(n+1-i).
Sequence in context: A343456 A087746 A064694 * A229440 A067622 A362284
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, Nov 04 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy