login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A266247
Binary representation of the middle column of the "Rule 9" elementary cellular automaton starting with a single ON (black) cell.
2
1, 10, 101, 1010, 10101, 101011, 1010110, 10101101, 101011010, 1010110101, 10101101010, 101011010101, 1010110101010, 10101101010101, 101011010101010, 1010110101010101, 10101101010101010, 101011010101010101, 1010110101010101010, 10101101010101010101
OFFSET
0,2
REFERENCES
Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
From Colin Barker, Dec 28 2015 and Apr 14 2019: (Start)
a(n) = (-45000*(-1)^n + 1000009*10^n - 55000)/990000 for n > 3.
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n > 6.
G.f.: (1 + x^5 - x^6) / ((1-x)*(1+x)*(1-10*x)).
(End)
a(n) = floor((100000*10^n/9 + 100001*10^n)/110000). - Karl V. Keller, Jr., Dec 15 2021
MATHEMATICA
rule=9; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k]], {k, 1, rows}] (* Binary Representation of Middle Column *)
PROG
(Python) print([(100000*10**n//9 + 100001*10**n)//110000 for n in range(50)]) # Karl V. Keller, Jr., Dec 15 2021
CROSSREFS
Sequence in context: A056830 A280146 A279665 * A267443 A267879 A284137
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 25 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy